Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 29(18): 3120-3127.e5, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31495587

RESUMO

Astrocytes are a major cell type in the mammalian nervous system, are in close proximity to neurons, and show rich Ca2+ activity thought to mediate cellular outputs. Astrocytes show activity linked to sensory [1, 2] and motor [3, 4] events, reflecting local neural activity and brain-wide neuromodulatory inputs. Sensory responses are highly variable [5-10], which may reflect interactions between distinct input types [6, 7, 9]. However, the diversity of inputs generating astrocyte activity, particularly during sensory stimulation and behavior, is not fully understood [11, 12]. Using a combination of Ca2+ imaging, a treadmill assay, and visual stimulation, we examined the properties of astrocyte activity in mouse visual cortex associated with motor or sensory events. Consistent with previous work, motor activity activated astrocytes across the cortex with little specificity, reflecting a diffuse neuromodulatory mechanism. In contrast, moving visual stimuli generated specific activity patterns that reflected the stimulus' trajectory within the visual field, precisely as one would predict if astrocytes reported local neural activity. Visual responses depended strongly on behavioral state, with astrocytes showing high amplitude Ca2+ transients during locomotion and little activity during stillness. Furthermore, the amplitudes of visual responses were highly correlated with pupil size, suggesting a role of arousal. Interestingly, while depletion of cortical noradrenaline abolished locomotor responses, visual responses were only reduced in amplitude and their spatiotemporal organization remained intact, suggesting two distinct types of inputs underlie visual responses. We conclude that cortical astrocytes integrate local sensory information and behavioral state, suggesting a role in information processing.


Assuntos
Astrócitos/metabolismo , Córtex Visual/metabolismo , Animais , Astrócitos/fisiologia , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia
2.
Nat Commun ; 8(1): 243, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811461

RESUMO

Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC 'place' cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.Neurons in the retrosplenial cortex (RSC) encode spatial and navigational signals. Here the authors use calcium imaging to show that, similar to the hippocampus, RSC neurons also encode place cell-like activity in a sparse orthogonal representation, partially anchored to the allocentric cues on the linear track.


Assuntos
Hipocampo/fisiologia , Percepção Espacial , Animais , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
3.
J Neurosci ; 37(14): 3972-3987, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28292833

RESUMO

Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics.SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in neuronal networks with neuron clustering. To test this, we created networks of varying architecture in vitro Supporting these predictions, the generation and spatiotemporal patterns of propagation were most variable in networks with intermediate clustering and lowest in uniform networks. Grid-like clustering, on the other hand, facilitated spontaneous activity but led to degenerating patterns of propagation. Neurons outside clusters had weaker synaptic input than neurons within clusters, in which increased membrane potential fluctuations facilitated the initiation of synchronized spike activity. Our results thus show that the intermediate level organization of neuronal networks strongly influences the dynamics of their activity.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Proteína Quinase C/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...